Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-(4-Ethoxyphenylamino)-2-oxo-1,2-dihydroquinoline

Victor B. Rybakov, ** Vladimir V. Chernyshev, ** Igor V. Ukrainets, ** Peter A. Bezugly, ** Lyudmila V. Sidorenko** and Nicola Skaif**

^aDepartment of Chemistry, Moscow State University, 119899 Moscow, Russian Federation, and ^bPharmaceutical Chemistry Department, Ukrainian National Academy of Pharmacy, 61002 Kharkov, Ukraine

Correspondence e-mail: rybakov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.046 wR factor = 0.104Data-to-parameter ratio = 10.8

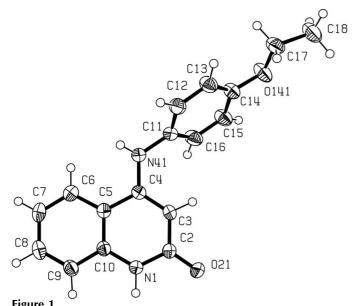
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The reaction product of 4-chloro-2-oxo-1,2-dihydroquinoline-3-carboxylic acid with p-phenetidine is 4-(4-ethoxyphenylamino)-2-oxo-1,2-dihydroquinoline, $C_{17}H_{16}N_2O_2$. The molecules form centrosymmetric hydrogen-bonded dimers.

Received 8 May 2001 Accepted 2 July 2001 Online 13 July 2001

Comment

N,N'-dicyclohexylcarbodiimide (DCC) (Kurzer & Douraghi-Zaden, 1967) is widely used in organic chemistry for the synthesis of amides of carboxylic acids. We investigated the possibility of using this condensing reagent for the synthesis of 4-chloro-2-oxo-1,2-dihydroquinoline-3-carboxamide (3) (see scheme below), which was supposed to possess bioactive properties. We carried out the reaction between 4-chloro-2-oxo-1,2-dihydroquinoline (1) with p-phenetidine (2) in a boiling mixture of N,N-dimethylformamide (DMF) and DCC, and obtained 4-(4-ethoxyphenylamino)-2-oxo-1,2-dihydroquinoline, $C_{17}H_{16}N_2O_2$ (4) instead of (3).


The X-ray single-crystal analysis showed that the 10-membered heterobicycle (N1–C10) (Fig. 1) is planar to within 0.06 Å, the O21 and N41 atoms showing small displacements from its least-squares plane [0.135 (2) and -0.166 (3) Å respectively]. The C11 atom also lies essentially in the same plane, as indicated by the C5–C4–N41–C11 torsion angle of -177.1 (2)°. The C11–C16 phenyl ring, however, is rotated out of the dihydroquinoline plane and forms a dihedral angle of 63.63 (4)° with the latter.

The N1—H1···O21 hydrogen bond $[H1···O21^i 1.86 (2), N1···O21^i 2.784 (2) Å and N1—H1···O21^i 168 (2)°; symmetry operation (i) <math>1-x$, 1-y, 1-z] links the molecules in the crystal into centrosymmetric dimers.

Experimental

2.23 g (0.01 mol) of (1) was refluxed for 2 h in 30 ml of N,N-dimethylformamide (DMF) with 1.51 g (0.011 mol) of p-phenetidine and 2.26 g (0.011 mol) of DCC. 4-(4-ethoxyphenylamino)-2-oxo-1,2-dihydroquinoline, $C_{17}H_{16}N_2O_2$ (4) was obtained (2.07 g, yield 74%) and was recrystallized from DMF.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

ORTEP-3 (Farrugia, 1998b) plot of the molecule of the title compound. Displacement ellipsoids are drawn at the 50% probability level

Crystal data

$C_{17}H_{16}N_2O_2$	Z = 2	
$M_r = 280.32$	$D_x = 1.321 \text{ Mg m}^{-3}$	
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation	
a = 7.075 (3) Å	Cell parameters from 2	
b = 8.783 (5) Å	reflections	
c = 12.469 (5) Å	$\theta=15.717.7^{\circ}$	
$\alpha = 105.85 (4)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$	
$\beta = 93.44 (3)^{\circ}$	T = 293 (2) K	
$\gamma = 106.89 (3)^{\circ}$	Prism, colourless	
$V = 705.0 (6) \text{ Å}^3$	$0.43 \times 0.33 \times 0.18 \text{ mm}$	

Data collection

Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: none 2956 measured reflections 2765 independent reflections 1912 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.017$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.104$ S = 1.102765 reflections 255 parameters All H-atom parameters refined 22

 $\theta_{\rm max} = 26.0^{\circ}$ $h = -8 \rightarrow 8$ $k=0\to 10$ $l = -15 \rightarrow 14$ 2 standard reflections every 200 reflections frequency: 125 min intensity decay: 1%

 $w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.049$ $\Delta \rho_{\text{max}} = 0.21 \text{ e Å}^{-3}$ $\Delta \rho_{\min} = -0.20 \text{ e Å}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.029 (5)

Table 1 Selected geometric parameters (Å, °).

N1-C2	1.363 (2)	C8-C9	1.362 (3)
N1-C10	1.375 (2)	C9-C10	1.402(2)
C2-O21	1.254(2)	C11-C12	1.375 (3)
C2-C3	1.419(2)	C11-C16	1.392 (3)
C3-C4	1.359(2)	C12-C13	1.386 (3)
C4-N41	1.378 (2)	C13-C14	1.382 (3)
C4-C5	1.455 (2)	C14-O141	1.367 (2)
N41-C11	1.419(2)	C14-C15	1.391 (3)
C5-C6	1.396(3)	O141-C17	1.428 (2)
C5-C10	1.400(2)	C15-C16	1.368 (3)
C6-C7	1.373 (3)	C17-C18	1.497 (3)
C7-C8	1.391 (3)		
C2-N1-C10	123.42 (15)	N1-C10-C5	120.22 (15)
O21-C2-N1	119.2 (2)	N1-C10-C9	119.2 (2)
O21-C2-C3	123.8 (2)	C5-C10-C9	120.5 (2)
N1-C2-C3	117.00 (15)	C12-C11-C16	118.6(2)
C4-C3-C2	122.4(2)	C12-C11-N41	120.2(2)
C3-C4-N41	123.4(2)	C16-C11-N41	121.1(2)
C3-C4-C5	119.2 (2)	C11-C12-C13	121.1 (2)
N41-C4-C5	117.42 (15)	C14-C13-C12	119.7 (2)
C4-N41-C11	123.7 (2)	O141-C14-C13	124.7 (2)
C6-C5-C10	117.9 (2)	O141-C14-C15	115.8 (2)
C6-C5-C4	124.6 (2)	C13-C14-C15	119.5 (2)
C10-C5-C4	117.49 (15)	C14-O141-C17	117.59 (14)
C7-C6-C5	121.2 (2)	C16-C15-C14	120.2 (2)
C6-C7-C8	120.3 (2)	C15-C16-C11	120.8 (2)
C9-C8-C7	120.0 (2)	O141-C17-C18	107.2 (2)
C8-C9-C10	120.1 (2)		

H atoms were refined isotropically; the C-H bond lengths are in the range 0.90–1.02 Å.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: WinGX98 (Farrugia, 1998a); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1998b); software used to prepare material for publication: SHELXL97.

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project 99-07-90133).

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1998a). WinGX98. University of Glasgow, Scotland. Farrugia, L. J. (1998b). ORTEP3 for Windows. University of Glasgow, Scotland.

Kurzer, F. & Douraghi-Zaden, K. (1967). Chem. Rev. 67, 107-152. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.